DSPRS: Dispersed Computing via Successive Refinement and Pricing with Resilience and Scale

Edge 10 Conference Dr. Siun-Chuon Mau 17 May, 2019

INFORMATION DEPLOYED. SOLUTIONS ADVANCED. MISSIONS ACCOMPLISHED.

© 2019 CACI INC.-FEDERAL

Overview

- **Needs:** On demand computing, communication, storage and control services
- **Current arts:** Conventional datacenter cloud computing has drawbacks: long data distance and excessive data transport cause latency and congestion and weaken security and privacy
- **Approach & benefits:** Include local/edge devices into the resource pool to avoid QoS and security bottlenecks of conventional cloud computing
 - Enhanced by breaking the end-to-end principle, with similarities to active networking
- **Goals:** Decentralized, efficient & automated allocation of dispersed, variable and heterogeneous computing and network resources to generic jobs

Technical Approach

Resource Allocation:

- Extended Network Utility Maximization (NUM) to treat task graphs
- Decentralized approximate NUM for routing and rate allocation

Coded Dispersed Computing:

• Leverage coded redundancies to speed up job completion and reduce errors

Main Results

 DSPRS achieves large gain over cloud-only computing under harsh network conditions by leveraging both local and cloud computing resources

Colorado University of Colorado at Boulder

PRINCETON

UNIVERSITY

SYSTEMS

WOR

NSPIRED

NCP= network computation point